organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,6-Diazidotoluene

Thomas M. Klapötke,* Burkhard Krumm, Matthias Scherr and Gunnar Spiess

Department of Chemistry and Biochemistry, Ludwig-Maximilian University, Butenandtstrasse 5-13, D-81377 Munich, Germany Correspondence e-mail: tmk@cup.uni-muenchen.de

Received 10 December 2007; accepted 17 December 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.030; wR factor = 0.061; data-to-parameter ratio = 11.0

The structure of the title compound, $C_7H_6N_6$, consists of almost planar molecules with C-N distances of 1.429 (2) and 1.428 (2) A. The H atoms of the methyl group are disordered over two sites with occupancy factors of 0.69 and 0.31. The azide groups show typical geometry for covalently bound azides.

Related literature

The preparation of the title compound by a slightly different procedure was reported by Chapyshev & Tomioka (2003). For the comparable compound, 2-azidobenzyl bromide, see: Klapötke et al. (2003).

Experimental

Crystal data

0 -
$V = 1619.4 (18) \text{ Å}^3$
Z = 8
Mo $K\alpha$ radiation
$\mu = 0.10 \text{ mm}^{-1}$
T = 200 (2) K
$0.29 \times 0.14 \times 0.13 \text{ mm}$

Data collection

Oxford Xcalibur3 CCD area-5871 measured reflections detector diffractometer 1578 independent reflections Absorption correction: multi-scan 956 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$ (CrvsAlis RED: Oxford Diffraction, 2007) $T_{\min} = 0.899, T_{\max} = 0.990$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.061$ S = 0.941578 reflections 143 parameters

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\text{max}} = 0.10 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.12 \text{ e} \text{ Å}^{-3}$

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrvsAlis RED: program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1996); software used to prepare material for publication: SHELXL97.

The University of Munich, the Fonds der Chemischen Industrie, and the Deutsche Forschungsgemeinschaft (KL 636/ 10-1) are gratefully acknowledged for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2092).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Brandenburg, K. (1996). DIAMOND. University of Bonn, Germany.
- Chapyshev, S. V. & Tomioka, H. (2003). Bull. Chem. Soc. Jpn, 76, 2075-2089. Klapötke, T. M., Krumm, B., Piotrowski, H., Polborn, K. & Holl, G. (2003). Chem. Eur. J. 9, 687-694.
- Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2008). E64, o348 [doi:10.1107/S160053680706744X]

2,6-Diazidotoluene

T. M. Klapötke, B. Krumm, M. Scherr and G. Spiess

Comment

The structure of the title compound exhibits C–N distances [C2–N1 1.429 (2) and C6–N4 1.428 (2) Å] similar to the distance in 2-N₃C₆H₄CH₂Br [1.428 (5) Å, Klapötke *et al.*, 2003]. The values of both azide groups are in the common range for covalent azide groups with longer N_{α}–N_{β} distances [N1–N2 1.241 (2) and N4–N5 1.253 (2) Å] and shorter terminal N_{β}–N_{γ} distances [N2–N3 1.133 (2) and N5–N6 1.122 (2) Å] with more triple bond character. The azide angles are slightly bent [N1–N2–N3 172.98 (18) and N4–N5–N6 172.36 (17)°].

Experimental

The title compound was prepared according the literature [Chapyshev & Tomioka (2003)], slightly modified, *e.g.* the column chromatography was performed with hexane/chloroform (1:4) as an eluent. Colorless crystals were obtained by slow evaporation of a chloroform solution. ¹H NMR (400 MHz, CDCl₃, Me₄Si): δ 7.23 (tq, 4-H, ³J_{H-H} = 8.1 Hz, ⁶J_{H-H} = 0.5 Hz, 1H), 6.89 (d, 3-H, 2H), 2.05 (m, CH₃, 3H) p.p.m.; ¹³C NMR (400 MHz, CDCl₃, Me₄Si): δ 140.0/127.2/121.3/114.0 (Ar-C), 11.2 (CH₃) p.p.m.; ¹⁵N NMR (400 MHz, CDCl₃, MeNO₂) δ –139.5 (N_β), –149.0 (N_γ), –291.4 (N_α) p.p.m.:

Figures

Fig. 1. Molecular structure of $C_7H_6N_6$ with displacement ellipsoids drawn at the 50% probability level. The minor disorder component of the methyl hydrogen atoms has been omitted.

2,6-Diazidotoluene

Crystal data $C_7H_6N_6$ $M_r = 174.16$ Orthorhombic, *Pccn* Hall symbol: -P 2ab 2ac a = 12.298 (5) Å b = 25.896 (5) Å c = 5.085 (5) Å V = 1619.4 (18) Å³

 $F_{000} = 720$ $D_x = 1.429 (1) \text{ Mg m}^{-3}$ Mo K\alpha radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1382 reflections $\theta = 3.9-30.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 200 (2) KNeedle, colorless

Z = 8

 $0.29 \times 0.14 \times 0.13 \text{ mm}$

Data collection

Oxford Xcalibur3 CCD area-detector diffractometer	1578 independent reflections
Radiation source: fine-focus sealed tube	956 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.040$
Detector resolution: 15.9809 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}$
T = 200(2) K	$\theta_{\min} = 4.3^{\circ}$
ω scans	$h = -15 \rightarrow 9$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)	$k = -19 \rightarrow 31$
$T_{\min} = 0.899, \ T_{\max} = 0.990$	$l = -5 \rightarrow 6$
5871 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.061$	$w = 1/[\sigma^2(F_o^2) + (0.0396P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.94	$(\Delta/\sigma)_{\rm max} < 0.001$
1578 reflections	$\Delta \rho_{max} = 0.11 \text{ e } \text{\AA}^{-3}$
143 parameters	$\Delta \rho_{\rm min} = -0.11 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Refinement. Aromatic H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C-H = 0.95 ($C_{arom}H$) and with $U_{iso}(H) = kU_{eq}$ (carrier atom), where k = 1.2 for CH. The H atoms attached to methyl C7 are disordered over two sites. These were freely refined; the occupancy of the major disorder component is 0.69 (5). The highest peak and deepest hole in the final difference map were located 0.93 Å from atom H7B and 0.32 Å from atom H7A, respectively.

.

Fractional atomic coord	linates and isotropic o	r equivalent isotropic	displacement	\dot{p} parameters (\AA^2))
-------------------------	-------------------------	------------------------	--------------	----------------------------------	---

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.45618 (11)	0.14719 (5)	0.0665 (3)	0.0348 (4)	
C2	0.45326 (12)	0.10499 (5)	-0.1031 (3)	0.0353 (4)	
C3	0.53072 (12)	0.06637 (6)	-0.0938 (3)	0.0415 (4)	
Н3	0.5271	0.0383	-0.2136	0.050*	
C4	0.61302 (13)	0.06857 (6)	0.0888 (3)	0.0426 (4)	
H4	0.6662	0.0420	0.0957	0.051*	
C5	0.61819 (12)	0.10957 (5)	0.2622 (3)	0.0405 (4)	

0.6745	0.1111	0.3899	0.049*	
0.54110 (12)	0.14841 (5)	0.2495 (3)	0.0353 (4)	
0.37338 (17)	0.18935 (8)	0.0524 (5)	0.0462 (4)	
0.297 (2)	0.1729 (9)	0.075 (5)	0.042 (10)*	0.69 (5)
0.385 (3)	0.2132 (11)	0.190 (8)	0.073 (11)*	0.69 (5)
0.381 (3)	0.2054 (10)	-0.129 (7)	0.060 (11)*	0.69 (5)
0.323 (4)	0.1895 (16)	-0.102 (10)	0.010 (16)*	0.31 (5)
0.334 (4)	0.193 (2)	0.231 (14)	0.04 (2)*	0.31 (5)
0.410 (4)	0.2239 (18)	0.031 (10)	0.015 (18)*	0.31 (5)
0.36418 (10)	0.10504 (5)	-0.2837 (2)	0.0440 (4)	
0.35797 (10)	0.06789 (5)	-0.4371 (3)	0.0419 (3)	
0.34235 (11)	0.03628 (5)	-0.5865 (3)	0.0564 (4)	
0.54156 (10)	0.19271 (4)	0.4164 (3)	0.0440 (3)	
0.61378 (11)	0.19404 (4)	0.5897 (3)	0.0409 (3)	
0.67279 (12)	0.19998 (5)	0.7553 (3)	0.0528 (4)	
	0.6745 0.54110 (12) 0.37338 (17) 0.297 (2) 0.385 (3) 0.381 (3) 0.323 (4) 0.334 (4) 0.36418 (10) 0.36418 (10) 0.35797 (10) 0.34235 (11) 0.54156 (10) 0.61378 (11) 0.67279 (12)	$\begin{array}{ccccccc} 0.6745 & 0.1111 \\ 0.54110 (12) & 0.14841 (5) \\ 0.37338 (17) & 0.18935 (8) \\ 0.297 (2) & 0.1729 (9) \\ 0.385 (3) & 0.2132 (11) \\ 0.381 (3) & 0.2054 (10) \\ 0.323 (4) & 0.1895 (16) \\ 0.334 (4) & 0.193 (2) \\ 0.410 (4) & 0.2239 (18) \\ 0.36418 (10) & 0.10504 (5) \\ 0.35797 (10) & 0.06789 (5) \\ 0.34235 (11) & 0.03628 (5) \\ 0.54156 (10) & 0.19271 (4) \\ 0.61378 (11) & 0.19404 (4) \\ 0.67279 (12) & 0.19998 (5) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6745 0.1111 0.3899 $0.049*$ $0.54110 (12)$ $0.14841 (5)$ $0.2495 (3)$ $0.0353 (4)$ $0.37338 (17)$ $0.18935 (8)$ $0.0524 (5)$ $0.0462 (4)$ $0.297 (2)$ $0.1729 (9)$ $0.075 (5)$ $0.042 (10)*$ $0.385 (3)$ $0.2132 (11)$ $0.190 (8)$ $0.073 (11)*$ $0.381 (3)$ $0.2054 (10)$ $-0.129 (7)$ $0.060 (11)*$ $0.323 (4)$ $0.1895 (16)$ $-0.102 (10)$ $0.010 (16)*$ $0.334 (4)$ $0.193 (2)$ $0.231 (14)$ $0.04 (2)*$ $0.410 (4)$ $0.2239 (18)$ $0.031 (10)$ $0.015 (18)*$ $0.36418 (10)$ $0.10504 (5)$ $-0.2837 (2)$ $0.0440 (4)$ $0.35797 (10)$ $0.06789 (5)$ $-0.4371 (3)$ $0.0419 (3)$ $0.34235 (11)$ $0.03628 (5)$ $-0.5865 (3)$ $0.0564 (4)$ $0.54156 (10)$ $0.19271 (4)$ $0.4164 (3)$ $0.0440 (3)$ $0.61378 (11)$ $0.19404 (4)$ $0.5897 (3)$ $0.0409 (3)$ $0.67279 (12)$ $0.19998 (5)$ $0.7553 (3)$ $0.0528 (4)$

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0329 (8)	0.0333 (8)	0.0382 (9)	-0.0034 (8)	0.0065 (8)	0.0026 (8)
C2	0.0346 (9)	0.0381 (8)	0.0332 (9)	-0.0052 (8)	0.0037 (8)	0.0030 (8)
C3	0.0440 (9)	0.0367 (8)	0.0436 (10)	0.0011 (9)	0.0053 (9)	-0.0017 (8)
C4	0.0415 (9)	0.0384 (8)	0.0480 (10)	0.0065 (9)	0.0043 (10)	0.0052 (9)
C5	0.0379 (9)	0.0444 (9)	0.0393 (9)	-0.0016 (9)	-0.0016 (9)	0.0050 (8)
C6	0.0367 (9)	0.0352 (8)	0.0340 (8)	-0.0039 (8)	0.0038 (8)	0.0013 (8)
C7	0.0428 (11)	0.0422 (10)	0.0537 (13)	0.0029 (11)	-0.0036 (12)	-0.0064 (12)
N1	0.0455 (8)	0.0406 (7)	0.0460 (8)	-0.0019 (7)	-0.0033 (7)	-0.0088 (7)
N2	0.0408 (8)	0.0462 (8)	0.0387 (8)	-0.0031 (8)	-0.0005 (7)	0.0000 (8)
N3	0.0611 (9)	0.0572 (9)	0.0510 (9)	-0.0003 (8)	-0.0051 (8)	-0.0148 (8)
N4	0.0455 (8)	0.0477 (8)	0.0388 (8)	-0.0006 (7)	-0.0065 (8)	-0.0063 (7)
N5	0.0455 (8)	0.0416 (8)	0.0357 (8)	-0.0052 (7)	0.0065 (8)	0.0007 (7)
N6	0.0545 (8)	0.0650 (10)	0.0389 (9)	-0.0080 (8)	-0.0047 (8)	-0.0028 (7)

Geometric parameters (Å, °)

C1—C2	1.393 (2)	C6—N4	1.4270 (19)
C1—C6	1.399 (2)	С7—Н7А	1.04 (3)
C1—C7	1.495 (2)	С7—Н7В	0.94 (3)
C2—C3	1.382 (2)	С7—Н7С	1.02 (3)
C2—N1	1.4294 (19)	C7—H7D	1.00 (5)
C3—C4	1.375 (2)	С7—Н7Е	1.04 (7)
С3—Н3	0.9500	C7—H7F	1.01 (5)
C4—C5	1.382 (2)	N1—N2	1.2410 (17)
C4—H4	0.9500	N2—N3	1.1331 (17)
C5—C6	1.3836 (19)	N4—N5	1.2518 (19)
С5—Н5	0.9500	N5—N6	1.1222 (17)
C2—C1—C6	116.67 (13)	Н7А—С7—Н7С	111 (2)
C2—C1—C7	121.72 (16)	H7B—C7—H7C	113 (2)

supplementary materials

C6—C1—C7	121.60 (15)	C1—C7—H7D	118 (2)
C3—C2—C1	121.93 (15)	H7A—C7—H7D	62 (2)
C3—C2—N1	123.42 (13)	H7B—C7—H7D	132 (3)
C1—C2—N1	114.65 (14)	H7C—C7—H7D	49 (2)
C4—C3—C2	120.03 (15)	С1—С7—Н7Е	110 (2)
С4—С3—Н3	120.0	Н7А—С7—Н7Е	61 (3)
С2—С3—Н3	120.0	H7B—C7—H7E	50 (3)
C3—C4—C5	119.80 (15)	Н7С—С7—Н7Е	143 (3)
C3—C4—H4	120.1	H7D—C7—H7E	113 (3)
С5—С4—Н4	120.1	C1—C7—H7F	110 (2)
C4—C5—C6	119.80 (14)	H7A—C7—H7F	141 (2)
С4—С5—Н5	120.1	H7B—C7—H7F	55 (2)
С6—С5—Н5	120.1	H7C—C7—H7F	60 (2)
C5—C6—C1	121.76 (13)	H7D—C7—H7F	101 (3)
C5—C6—N4	123.63 (14)	H7E—C7—H7F	103 (3)
C1C6N4	114.61 (13)	N2—N1—C2	116.77 (13)
С1—С7—Н7А	108.3 (11)	N3—N2—N1	172.70 (16)
С1—С7—Н7В	109.8 (17)	N5—N4—C6	116.34 (13)
H7A—C7—H7B	109 (3)	N6—N5—N4	172.29 (15)
С1—С7—Н7С	106.0 (15)		
C6—C1—C2—C3	-0.6 (2)	C4—C5—C6—N4	-178.50 (14)
C7—C1—C2—C3	178.86 (16)	C2-C1-C6-C5	-0.2 (2)
C6—C1—C2—N1	179.09 (12)	C7—C1—C6—C5	-179.69 (16)
C7—C1—C2—N1	-1.5 (2)	C2-C1-C6-N4	179.16 (13)
C1—C2—C3—C4	0.8 (2)	C7-C1-C6-N4	-0.3 (2)
N1—C2—C3—C4	-178.84 (13)	C3—C2—N1—N2	0.2 (2)
C2—C3—C4—C5	-0.2 (2)	C1-C2-N1-N2	-179.43 (13)
C3—C4—C5—C6	-0.6 (2)	C5—C6—N4—N5	-3.5 (2)
C4—C5—C6—C1	0.8 (2)	C1—C6—N4—N5	177.14 (13)

Fig. 1